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Goal

The primary goal is to develop a response surface

for a variety of 
igh t conditions.

� Running a standard experiment is infeasible

� Wind tunnel experiments are expensive

� Computing is relatively cheap

� Mathematical sophistication is increasing

Thus a computer exp erimen t is used



Rocket Booster Model

Computational Fluid Dynamics simulator

Inputs

� speed(Mach number)

� angleof attack (alpha)

� sideslip angle(beta)

Outputs

� lift

� drag

� pitch

� side-force

� yaw

� roll



x[1]=m
ach

x[2]=alpha

z=lift

E
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ated S
urface



Our Approach

Combine modeling and sequential exp erimen tal design .

� Start with an initial small run

� Fit a model and estimatepredictive uncertainty

� Choosenew run locations basedon uncertainty

� Attempt to put more e�ort in \in teresting" regions



GaussianProcessModels

Traditional approach to modeling computer experiment output is a
Gaussian Pro cess (GP ) (Sacks et al., 1989;Santner et al., 2003).

� Nonparametric spatial model

� Fit linear or polynomial trends with spatially correlateddeviations

� Correlation betweentwo points dependson their distance

� Result is a smooth yet 
exible surface



GaussianProcesses

Z(x) = X � + W (x)

Z model outputs

x an arbitrary input value

X model inputs at all currently known data points

� linear trend coe�cien ts

W meanzerospatial process

Notes:

� Prediction available in closedform, if covariancestructure known

� Stationary model



Partitioning

� Usea binary tree structure to recursiv ely partition the space

{ Allow multiple splits per variable

� Fit a separateGP on each partition

� Fitting of tree structure and GPs is donesimultaneously through
MCMC

� Extension of partitioned linear regressionmodel (Chipman et al.,
2002)

� Nonstationarity achieved through partitioning



Fit with MCMC

Samplefrom the join t posterior of (T ; � )

(Richardson& Green,1997;Chipman et al., 2002)

� Averageover T with rev ersible-jump MCMC (RJ-MCMC)

� Treeoperations: grow, prune , change, swap, and rotate

Gibbs sampling for all parametersexcept the correlation, which requires
Metropolis-Hastings



Motorcycle Data Example

(Silverman, 1985)

Data features :

� non-stationary
� input-dependent noise
� popular in recent literature

(Rasmussenet al., 2002)
DP-mix of GP (DPGP)

Treed GP mo del :

� � 3 regions
� notice step-wisetransition

from middle to right region
� > 10x faster than DPGP
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Adaptive Sampling

Activ e Learning / Sequential Designof Experiments

� selectfuture designsites to improve our knowledge(model)

� maximize somemeasureof utilit y

{ Kullback-Leibler distancebetweenposterior predictive and prior
predictive | equivalent to minimizing predictiv e variance

{ Choosenext point as the one which has the largest predictive
variance(MacKay, 1992)(ALM)



Issues

� Standard designapproachesassumethe model and its parametersare
known

� Standard optimal designstend to push points to the boundaries

� Searching over continuousspacemust be doneapproximately

� Needto selecta list of multiple points

� Needto deal with pending data (experiments currently being run)



Iterativ e Algorithm

� UseMCMC to �t parametersand estimate variancesusing currently
known data plus �tted valuesat pending locations

� Create prioritized list of new designpoints basedon predictive
variance

� Incorporate results of new experimental runs

� Clear or prune tree structure and repeat



Adaptive SamplingDemo
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Rocket Booster Example

� 3 inputs, 6 outputs

� Each samplerequired 5-20hours computing time

� Non-stationary

� Fit independent treed GP for each response,usestandardizedaverage
of predictive variabilit y



Adaptive Samplingon LGBB: Lift
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Adaptive Samplingon LGBB: Lift
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Adaptive Samplingon LGBB: Drag
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Adaptive Samplingon LGBB: Pitch
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Adaptive Samplingon LGBB: SideForce
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Adaptive Samplingon LGBB: Yaw
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Adaptive Samplingon LGBB: Roll
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Adaptive Samplingon LGBB
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Conclusions

� Can createa surrogatemodel during sequential experimental design

� Can model nonstationarity

� Can greatly reducenecessarycomputing time

� R code available for treed Gaussianprocesses
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